
Introduction
The accumulation of cancer genome projects 

through The Cancer Genome Atlas (TCGA, ref: https://
tcga-data.nci.nih.gov/tcga/) and the International 
Cancer Gene Consortium (ICGC, ref: https://icgc.org/) 
has resulted in a long list of adult solid and hematopoi-
etic tumors, each involving hundreds of patients, each 
with a matched normal genome for comparison.  The 
output of the major sequencing centers is collected in 

the TCGA data repository, CGHub (https://cghub.ucsc.
edu/), or the ICGC repository at EBI (https://www.ebi.
ac.uk/ega/) and is accessible to researchers worldwide 
with interest and expertise in the study of cancer. 

Each cancer was studied individually and the find-
ings published in leading journals with impressive 
novel observations, recently reviewed in 1)〜3). In 2012, 
the leadership of TCGA launched a new initiative, the 
Pan-Cancer Project, to analyze the large assemblage of 
cancer exomes at CGHub, 5,074 patients in all, span-
ning 12 cancers, as a single unit, with the goal of 
asking what molecular features are common to all can-
cers and which ones differ 4). In particular, could novel 
new cancer genes and pathways be brought to light 
through the statistical power of thousands of tumors 
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combined in a single data set?
Upon the data freeze in December 2012, the consor-

tium of analysts had amassed sufficient data from 12 
cancer types (Figure 1), covered by, all or in part, six 
molecular platforms: whole exome (3,247), copy 
number (4,932), mRNA (4,080) and miRNA (4,628) 
expression, DNA methylation (4,855) and reverse 
phase protein arrays (2,674). 

The Pan-Cancer project, led by J. Stuart, C. Sander 
and I. Shmulevich was a daunting undertaking since 
there existed no infrastructure to support the quality 
control of raw data, setting data freezes for samples 
across a dozen cancer types, version-control of sum-
mary data files representing individual platforms, coor-
dination of the activities of sub-groups for this project.  
The team selected the web repository Synapse, from 
Sage Bionetworks 5), as an organizing principle for 
project coordination and data tracking functions. The 
Synapse software platform was designed to support 
key elements of large multi-center cooperative under-
takings such as this. 

As of this review, 22 papers have been published 
with many more in progress.  The current papers, pub-
lished mainly in the fall of 2013, bridge 7 topic areas 
(Table 1).  The first three topics aggregate projects 
dealing with various aspects of somatic mutation, the 
impact of mutations in single genes or gene families, 
and mutational mechanisms. They consider both point 
mutations and copy number alterations (CNA).  In 
these three topics, different research groups looked at 
the organ specificities of mutated genes and explored 
new techniques for recognizing significant mutation 
patterns that can only be discerned using very large 
data sets. Three groups drew insights relating to non-
coding RNAs for the forth topic and one study 
explored the presence and functional relationship of 
viral pathogen sequences in tumors for the fifth topic. 
The sixth topic dealt with approaches that defined 
novel networks of genes and pathways, and their use 
in stratifying tumors either biologically or for thera-
peutic intervention. Finally, in the seventh topic, four 
groups present internet resources and tools to enable 
other researchers to mine the data for answers to their 
own questions. 

Here we review the highlights of the TCGA Pan-
Cancer project, and critique and discuss the future 
prospects for the “globalization” of analysis of the 
TCGA and ICGC cancer genomics data sets.

1	Pan-Cancer observations
１）Somatic mutations landscape

Most adult solid tumors average between 1 and 10 
mutations per million bases of coding DNA although 
the range among individual patients within a tumor 
type varies by two orders of magnitude 6). How many 
of those mutations are contributing functionally to the 
cancer phenotype? Kandoth et al. suggested that most 
tumors harbor only 2〜6 driver mutations 7).  Law-
rence et al. go on to refine the background mutation 
rate calculation, critical in assessing driver status of a 
given gene, by taking into account the effect of replica-
tion timing and transcriptional activity. Genes that are 
replicated early in the S-phase of the cell division 
cycle, or are expressed at high levels, have lower 
background mutation rates 6). This approach led them 
to conclude that several reported genes such as 
CSMD1, CSMD3 and LRP1B appear to have been 
incorrectly identified as cancer drivers.  Tamborero et 
al.8) discern non-random distributions of amino acid 
substitution within each gene to augment the methods 
based solely on mutation rate computation.  They 
identified three patterns of mutation indicative of posi-
tive selection: i. Functional bias, implied by excess 
nonsense frame-shift and splice site mutations; ii. 
Clustered missense mutations, the classical “onco-
gene” pattern seen in the recurrent mutation sites of 
KRAS or IDH1; iii. Enrichment of mutations affecting 
phosphorylation sites. From this approach, they find 
over 100 new candidate cancer driver genes.

Tumors driven by more than two cancer genes 
afford an opportunity to assess patterns of co-occur-
ance or mutual exclusivity, revealing information 
about signaling pathways in operation in the given 
cancer. In the majority of cancers in the study, muta-
tion of TP53 is mutually exclusive with some other 
cancer driver 7).  On the other hand, every cancer has 
one or more genes that are mutually exclusive 
uniquely in a given cancer (Figure 2).

Analysis of CNA of almost 5,000 primary cancers 
across 11 cancer types revealed 140 regions of recur-
rent amplification or deletion.  Most surprising is that 
the majority of the regions, 102, had no known onco-
gene or tumor suppressor 9), indicating that there is 
much more to be learned about the targets of selection 
in affected tumors.
２）Somatic mutation mechanism

Three projects lead to new insights into mutational 
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mechanisms.   Two of those delved into the preva-
lence of the mutation signature produced by the cyti-
dine deaminase, APOBEC3B. This gene can convert 
cytosine to uracil, and is thought to play a role in RNA 
editing in normal cells but in some cancers it also 
mutates DNA, producing specific patterns of nucle-
otide substitutions at C residues. Cancers of bladder, 
cervix, lung, head and neck, and breast 10)11), all show 

significant contribution to the overall mutation profile 
from APOBEC-associated DNA damage.

The third study examined the relationship between 
point mutation (M-class) and CNA (C-class) and 
revealed an intriguing inverse relationship between 
these two types of mutation when data from all can-
cers were combined 12).  Ciriello et al. stratified these 
classes into disease-specific signatures, which could be 

Figure 1　Organization and data flow in the TCGA Pan-Cancer project
Synapse, dashed line box, which lay outside of the TCGA project, was a key enabling technology for version con-
trol and coordination of the analyses. TCGA Data Portal is at https://tcga-data.nci.nih.gov/tcga/, the cBioPortal at 
http://www.cbioportal.org/public-portal/  and Firehose at https://confluence.broadinstitute.org/display/GDAC/
Home.  BCR, the Biospecimen Core resource, prepares all analytes, DNA, RNA and protein, for distribution to 
TCGA data-generating centers; AWG, the TCGA disease-specific Analysis Working Groups〔Reproduced from （4）〕
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Table 1
Theme Ref Title Lead Institution Journal Pubmed ID

PanCancer Overview 4 The Cancer Genome Atlas Pan-Cancer analysis 
project TCGA Nat Genet 24071849

Mutation Landscape

9 Pan-cancer patterns of somatic copy number altera-
tion Broad Nat Genet 24071852

7 Mutational landscape and significance across 12 
major cancer types WashU Nature 24132290

8 Comprehensive identification of mutational cancer 
driver genes across 12 tumor types

UPF, Toronto, 
WashU Sci Rep 24084849

6 Mutational heterogeneity in cancer and the search 
for new cancer-associated genes Broad Nature 23770567

Mutation Impact

13 Effects of TP53 mutational status on gene expression 
patterns across 10 human cancer types BCM J Pathol 24374933

15 The mutational landscape of phosphorylation 
signaling in cancer U Toronto Sci Rep 24089029

14
A pan-cancer analysis of transcriptome changes 
associated with somatic mutations in U2AF1 reveals 
commonly altered splicing events

Broad PLoS One 24498085

Mutation mechamism

10 Evidence for APOBEC3B mutagenesis in multiple 
human cancers U Minnesota Nat Genet 23852168

11 An APOBEC cytidine deaminase mutagenesis 
pattern is widespread in human cancers NIEHS, Broad Nat Genet 23852170

12 Emerging landscape of oncogenic signatures across 
human cancers MSKCC Nat Genet 24071851

ncRNA

20 Identification of a pan-cancer oncogenic microRNA 
superfamily anchored by a central core seed motif BCM Nat 

Commun 24220575

21 Analysis of microRNA-target interactions across 
diverse cancer types MSKCC Nat Struct 

Mol Biol 24096364

22
The expression level of small non-coding RNAs 
derived from the first exon of protein-coding genes 
is predictive of cancer status

BCCR EMBO Rep 24534129

Pathogens 19 The landscape of viral expression and host gene 
fusion and adaptation in human cancer U Gothenburg Nat 

Commun 24085110

Networks & Subtypes

16 Network-based stratification of tumor mutations UCSD Nat Struct 
Mol Biol 24037242

17
Gene co-expression network analysis reveals 
common system-level properties of prognostic genes 
across cancer types

MDACC Nat 
Commun 24488081

 A pan-cancer proteomic perspective on The Cancer 
Genome Atlas MDACC Nat 

Commun 24871328a）

18 Inferring tumour purity and stromal and immune cell 
admixture from expression data MDACC Nat 

Commun 24113773

Tools and Portals

25 TCPA：a resource for cancer functional 
proteomics data MDACC Nat 

Methods 24037243

23 Exploring TCGA Pan-Cancer Data at the UCSC 
Cancer Genomics Browser UCSC Nat 

Methods 24084870

24 IntOGen-mutations identifies cancer drivers across 
tumor types UPF Nat 

Methods 24037244

5
Enabling transparent and collaborative 
computational analysis of 12 tumor types within The 
Cancer Genome Atlas

Sage Bionet-
works Nat Genet 24071850

Institutions: Broad, Broad Institute of MIT and Harvard; BCM, Baylor College of Medicine; MSKCC, Memorial Sloan 
Kettering Cancer Center; MDACC, MD Anderson Cancer Center; UCSD, University of California, San Diego; UCSC, 
University of California, Santa Cruz; NIEHS, National Institute of Environmental Health Sciences; UPF, Pompeu Fabra 
University; Wash U, Washington University, St. Louis. a）PMID 24871328 has become available since submission of 
the manuscript and could not be discussed. It is included for completeness.
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characterized by their content of therapeutically 
actionable targets 12).  
３）Effects of mutated genes

Two studies focused on the consequences of muta-
tion of single genes for the transcriptional program of 
the cell.  TP53 is the most commonly mutated gene in 
human cancers, and is perhaps the most thoroughly 
studied cancer gene of all. In absence of wild type 
p53, upregulation of G2/M transcription factors, 
including FOXM1 and MYBL2, leads to activation of 
transcription programs that drive mitosis.  Parikh et al. 
show that a high fraction of the genes composing the 
kinetochore are highly upregulated in the absence of 
wild type p53 in multiple human cancers, providing 
important mechanistic insight into the regulation of 
cell division by TP53 13). 

Brooks et al. ask what happens to the overall 
splicing capability of the cancer cell when the splicing 

factor, U2AF1, is mutated. They observed 30 genes 
with significant alteration in splice pattern, including 
the well-known oncogenic transcription factor, beta 
catenin 14).  How the specificity arises to target only 30 
these genes is still unclear, but this analysis revealed 
an intriguing hidden link between U2AF1 and WNT 
signaling.

Post-translational phosphorylation of proteins plays 
a central role in intracellular signaling. Reimand et al. 
use the enrichment of mutations at phosphorylation 
sites 〔i.e., pattern iii from （8）, above〕 to analyze the 
relationships among mutated signaling proteins, and 
use this information to predict how signaling pathways 
may be rewired in cancer cells 15).
４）Stratification of cancer by network analysis

The goal of systems biology is to identify prognostic 
and predictive features of the cancer cell using global 
attributes of multi-dimensional genomics data.  The 

Figure 2　�Mutual exclusivity of mutation within and between cancers
The program Dentrix 7) was applied to all pairwise combinations of genes recurrently mutated in the 11 of the can-
cers under consideration in the Pan-Cancer project (labeled in outer ring) to identify patterns of mutual exclusivity 
in driver genes that co-occur in individual tumors.  TP53 mutation is mutual exclusive with some other cancer 
gene in the majority, 9, of the cancers.  KRAS and PTEN were also mutually exclusive with another gene in mul-
tiple cancers. All other genes were found to be mutually exclusive in only one cancer〔Reproduced from （7）〕
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Network-Based Stratification of cancer mutations is 
one of a class of methods that maps genomic data, in 
this case mutation data, onto known gene and 
pathway networks.  Hofree et al. clustered patients 
with mutations in similar network regions that were 
predictive of tumor histology, response to therapy, and 
patient survival 16).  Co-expression networks were used 
by Yang et al to identify prognostic mRNA genes, 
which are groups of highly interconnected genes that 
show cross-cancer conservation 17). Taken together, 
these studies suggest that cancers of different organ 
systems, but with the similar prognostic gene net-
works, may one day be treated using similar clinical 
approaches.

Yoshihara et al. stratified tumors by the fractions of 
infiltrating reactive stromal and immune cells within 
the tumor as inferred computationally from gene 
expression data 18).  Although the method developed 
for achieving this was designed for the purpose of esti-
mating tumor purity, i.e. the fraction of cells in a 
tumor that are cancer cells, tissue composition plays 
an important role in cancer biology and clinical prog-
nosis. Thus, there is great interest in computationally 
derived characterization of the cell mixtures in a 
tumor.
５）Pathogens in cancer

Viruses cause >10% of human cancer and in the first 
large-scale assessment of virus expression, Tang et al. 
analyze over 700 billion RNA Seq reads to quantify the 
presence of viral sequences and understand their rela-
tionship to the host. Besides the common association 
of HPV with cervical and oropharyngeal squamous cell 
carcinoma, and HBV and HCV with liver cancer, trace 
levels of viral RNAs from different species were seen 
in kidney clear cell, endometrial and lung cancers. 
Most interesting was the observation of highly 
expressed transcripts representing fusions between 
virus and host sequences, including recurrent fusions 
with cancer genes such as ERBB4, MLL4, PTV1 and 
RAD51B 19).
６）Role of non-coding RNA

In spite of the known importance of miRNA to gene 
regulation at the transcriptional level, the relationships 
between a given miRNA and its target genes are poorly 
defined.  Two of the miRNA studies use clever 
approaches to infer high-confidence sets of miRNA 
with their cognate mRNA. Hamilton and colleagues 
integrate the Pan-Cancer miRNA data with databases 
of miRNA binding sites defined by cross-linking 

studies and find mutational evidence for disruption of 
the binding of specific miRNAs to key tumor suppres-
sors in the PI3K, TGF β , and p53 pathways 20) . 
Jacobsen et al., compared expression levels of miRNA 
and mRNA to infer miRNA-target relationships 21). 
They found regulation of DNA demethylation pathway 
members TET1 and TDG.  Both of these studies break 
new ground in our understanding of how miRNA 
directly impacts key intracellular signaling pathways.

Zovoilis et al. investigated the differential expression 
of small non-coding RNAs, a class of RNA associated 
with the transcription initiation start site of genes, and 
found that their abundance could discriminate cancer 
and normal tissues, and predict cancer status 22). This 
is the first reported association between these enig-
matic short non-coding RNAs and cancer and may 
eventually lead to the discovery of new avenues to 
understanding of tumorigenesis.
７）Tools and internet portals

The sum total of cancer genomic data amassed thus 
far occupies petabytes of data storage.  Therefore tools 
and portals are essential for exploring and analyzing 
TCGA data. Reported for the Pan-Cancer Project 
include UCSC Cancer Genomics browser (http://
genome-cancer.ucsc.edu), the IntOGen-mutations 
platform (http://www.intogen.org/mutations/), The 
Cancer Proteome Atlas (TCPA, http://bioinformatics.
mdanderson.org/main/TCPA:Overview) and the afore-
mentioned Synapse software platform.

The UCSC Cancer Genomics browser is an interac-
tive visualization and exploration portal for browsing 
and analyzing gene expression, copy number, DNA 
methylation, and somatic mutation in the context of 
the genome browser 23). It includes the ability to layer 
onto genomic data, pathway information and clinical 
features to enable data mining in real time. It also pro-
vides Pan-Cancer subtype classifications and genomic 
biomarkers.  The IntOGen-mutations web-site 24) pro-
vides a browser for the driver mutation data reported 
by the aforementioned work of Tamborero et al. pro-
viding ready access to frequencies, functional impact 
and spatial clustering tendencies of mutations by 
patient and by cancer.  And finally, The Cancer Pro-
teome Atlas (TCGP) tracks the abundance of 200 pro-
teins and phosphorproteins, measured by antibody 
staining in reverse phase protein arrays, and allows 
users to correlate pair-wise protein levels across the 
entire data set; evaluate differential expression levels 
between different groups of samples, and link these 
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results to patient survival 25).  Together, these internet 
portals form an extraordinary resource for the investi-
gation of cancer genes that should enhance the study 
of cancer for basic and clinical researchers alike. 

2	Future directions
The goal of TCGA is to collect multi-platform 

genomic data on 10,000 cancer patients.  The project 
is stratified into more than 25 cancers, the majority of 
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which include at least 500 patients. The reason for the 
deep population analysis is to minimize disease hetero-
geneity.  Indeed, breast cancer is so well characterized 
into distinct sub-types that TGCA took the unusual 
step of extending that cohort to over 1,000 patients.  
The Pan-Cancer seeks to pool all the patients to ask 
two fundamental questions: what common features 
among all cancers can be discovered with the extraor-
dinary statistical power of thousands of patients; what 
new features of each disease might emerge from multi-
platform integrated analysis?  With the current anal-
ysis we find ourselves at the about the halfway point 
on the road to completion and the findings, as 
reviewed here, are impressive.   Based on the above 
results, we may expect still more novel genes and 
pathways to emerge.  Lawrence et al. have argued 
forcefully, that for genes mutated at the 1〜3% level 
we have only scratched the surface of the mutation 
space 26). One might argue that for genes mutated so 
infrequently, the clinical implications are small and 
time would be better spent in pursuit of therapeutic 
options for the more frequently mutated genes. How-
ever, the network analyses reported above suggest the 
opposite is true.  The infrequently mutated genes are 
often participants in pathways that relate to targeted 
therapies, and might one day help stratify patients into 
therapeutic subgroups with much improved outcomes. 
As the TCGA data generation effort completes its final 
year, and the data for all 10,000 patients becomes 
available, Pan-Cancer analyses can only become more 
revealing. 

The current analysis is not without its limitations, 
and future rounds of analysis will seek to further 
improve on this work.  The current data set consists of 
mutation data derived from the three US National 
Sequencing Centers: the Broad Institute of MIT and 
Harvard, The Genome Institute of Washington Univer-
sity and the Human Genome Sequencing Center at 
Baylor College of Medicine.  Subtle differences in DNA 
sequence alignment and somatic mutation calling have 
probably led to “batch effects” in the data 〔see for 
example （27〜29）〕. Mutation profiling in a Pan-
Cancer context will become more accurate and sensi-
tive after uniform alignment of all the cancer data with 
a single aligner, followed by recalling mutations using 
the greatly improved mutation callers that have 
emerged from five years of experience in cancer anal-
ysis. As with somatic mutation calling in whole exome 
data, wherein multiple mutation calling approaches 

leads to more sensitive mutation calls, analysis of RNA 
Seq data will also benefit from the application of mul-
tiple algorithms, especially for detection of alternative 
splicing and gene fusion transcripts. 

Both of these improvements will require efficient 
pipelines implemented in “the cloud” wherein the 
computing resource can be matched to the gigantic 
scale of the data. The ICGC in collaboration with 
TCGA has begun an analysis of comparable size with 
analysis of 2,000 whole genome sequence patients. 
Though fewer in number, a matched tumor-normal 
whole genome sequence data set is roughly the size of 
10 whole exomes. This extraordinary experiment is 
exploiting the resources of the cloud already and 
should provide valuable experience for the next round 
of Pan-Cancer TCGA analysis.

The use Synapse for data aggregation and versioning 
has afforded valuable experience in support of the 
coordination of large-scale multi-institutional project. 
And whereas the first round of analyses was predomi-
nated by researchers in, or affiliated with TCGA anal-
ysis centers, there were several groups participating 
from the outside (Table 1). As more national and 
international researchers become aware of the oppor-
tunity this vast data set affords, participation will 
expand, and with that, new ideas and approaches will 
lead to new insights into the disease. Thus, the Pan-
Cancer analysis of TCGA data is a living process, 
inviting participation worldwide to seek better under-
standing for clinicians and better outcomes for 
patients. 
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