
Introduction
Second-generation sequencing technologies opened 

the door to the comprehensive characterization of the 
somatic alterations in the genome of tumor cells, thus 
transforming the study of cancer 1). Cancer samples, 
even from the same tumor type, have been revealed as 
highly heterogeneous in their somatic abnormalities 2). 
The rate and pattern of somatic mutations are shaped 
by factors like the number of replication rounds accu-
mulated by cells, the presence of defects in the DNA 
maintenance mechanisms and the exposure to envi-
ronmental insults 3). Only a small subset of the somatic 
mutations found in cancer cells are responsible of the 

tumorigenesis, whereas the remaining are sporadic 
events secondary to the genomic instability caused by 
the cancer 4) . The need to distinguish the former 
-driver mutations- from the latter -passengers- is one 
of the most important tasks in cancer biology research 
as well as in the development of novel therapeutic 
interventions.

Despite big advances in recent years, the interpreta-
tion of the vast amount of data provided by tumor 
genomes re-sequencing is still challenging in many 
ways. Here, we review the state-of-the-art of methods 
aimed to identify drivers of cancer and discuss some of 
their main results. Bear in mind that in this article we 
cover only somatic singe nucleotide variants and short 
frameshifts. In addition, we focus only on strategies 
that evaluate the effect of mutations in the exome; the 
role of alterations in non-coding regions is still a more 
immature field that will certainly explode in coming 
years thanks to the decreasing costs of whole genome 
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sequencing. 

1	Identifying the impact of cancer 
mutations

The first step to assess the role of a somatic muta-
tion detected by tumor genome re-sequencing is to 
annotate it in the context of genomic elements. For 
coding sequences, this means to identify the protein-
coding gene overlapping the mutation and assess its 
consequence. Mutations that truncate the protein 
product (stop gained or frameshift mutations) probably 
result in inactivation of the protein; in comparison, 
synonymous mutations are much milder to protein 
function. Between these two extremes, non-synony-
mous mutations are the subject of computational 
methods to assess their impact on protein function 
(Table 1) 5). Tools initially designed to be used on 
germ-line mutations, mutations, such as SIFT 6), Poly-
phen-2 7) and Mutation Assessor 8), use different met-
rics of amino acid conservation to infer the extent of 
protein impairment. Condel integrates the output of 
these tools into a consensus deleteriousness score, 
based on a weighted average of the normalized orig-
inal scores, which outperform them 9). Recently, some 
bioinformatics tools have been specifically developed 
to rank tumor somatic mutations. FATHMM distin-
guishes driver mutations through sequence conserva-
tion data within hidden Markov models weighted with 
cancer data 10). CHASM uses a Random Forest algo-
rithm trained with a set of driver and synthetically-
created passenger mutations set, which using several 
features on top of conservation, such as specific amino 
acid substitutions and predicted protein structure 
change properties 11). Finally, transFIC takes into 
account the differences in baseline tolerance to func-
tional variants between groups of genes to refine the 
score of some of the aforementioned methods 12). The 
analysis of mutations with other consequence types, 
such as splice-site mutations requires other specific 
tools 5).

2	Identifying signals of positive 	
selection

A driver mutation confers selective growth advan-
tage to a cell and is thus selected during the clonal 
evolution of the tumor, whereas a passenger mutation 
is propagated as a bystander. Genes involved in tum-
origenesis will therefore exhibit signals of positive 
selection across a cohort of tumor samples. Several 

signals of positive selection have been exploited to 
identify putative driver genes (Figure 1, Table 1). 
The most intuitive one consists in evaluating whether a 
gene is mutated more frequently than one would 
expect given the background mutation rate. This has 
been implemented in methods such as MuSiC, devel-
oped by the Washington University 13), and MutSig, 
developed by the Broad Institute 14). The estimation of 
the background mutation rate takes into account fea-
tures such as gene length, the type of mutation and the 
nucleotide context, which shapes the baseline proba-
bility of the somatic mutation to occur within each 
particular genomic position. Other factors that influ-
ence the mutation rate -as the replication time of the 
DNA region and the gene expression level- have been 
incorporated as covariates in the statistical framework 
of the latest implementation of MutSig -termed 
MutSigCV- to increase its accuracy 14). Although these 
methods have been demonstrated to be successful in 
detecting those genes that are more frequently 
mutated in cancer, this approach rarely detects lowly 
recurrent drivers, which are crucial to understand the 
whole picture of tumorigenesis, since further precision 
in the estimation of the background mutation rate and/
or larger sample sizes are required for this.

A second approach that does not depend on the 
mutation burden relies on the evaluation of the func-
tional impact of the mutations of each gene across the 
samples cohort. Driver mutations in coding genes must 
impact the function of the encoded protein, as 
opposed to passengers that are randomly distributed. 
Therefore, the identification of genes bearing muta-
tions biased towards higher functional impact is an 
indication of positive selection and can be used to dis-
tinguish driver genes. Because this approach does not 
rely on the estimation of the background mutation 
rate, it is suited to detect drivers regardless of their 
mutation frequency. This is implemented by Onco-
driveFM 15), which uses several metrics to estimate the 
functional impact of each mutation per gene and com-
putes their deviation with respect to the background.  

The clustering of the mutations in particular posi-
tions of the protein primary structure is a third signal 
of positive selection. Those mutations that accumulate 
in certain positions of the protein should correspond to 
events targeted by cancer. This idea is implemented by 
OncodriveCLUST 16), which takes into account that the 
probability of mutations is not homogeneous across 
the protein sequence. This method uses silent muta-
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Table 1　
Method Description

Estimation of 
the functional 
impact of a 
single non-
synonymous 
variants

SIFT 6)

Builds a MSA of similar proteins according to a database defined by the user and 
calculates normalized probabilities for all possible substitutions at all positions of 
the alignment. Based on these probabilities, SIFT classifies observed substitutions 
as likely neutral or deleterious.

Polyphen-2 7)

Naïve Bayes classifier trained from two data sets that contain both deleterious and 
neutral amino acid changes. Eight sequence-based and three structure-based 
predictive features, most of them involving comparison of a given property of the 
wild-type amino acid and its mutated counterpart are the properties used to build 
the classifier.

Mutation Assessor 8)

A prediction of the functional impact of nsSNVs is based on the assessment of 
evolutionary conservation of amino acid residues. It exploits the evolutionary con-
servation in protein subfamilies, which are determined by clustering MSAs of 
homologous sequences on the background of conservation of overall function.

Condel 9)

Condel (Consensus deleteriousness score) is an approach to combine the func-
tional impact scores of nsSNVs. It uses values extracted from the complementary 
cumulative distributions of the scores produced by individual tools on a dataset of 
deleterious and neutral nsSNVs as weights to combine them. 

FATHMM 10)

Predicts the functional effects of cancer somatic mutations combining sequence 
conservation with hidden Markov models representing the alignment of homolo-
gous sequences and conserved protein domains with cancer “pathogenicity weights” 
representing the tolerance of the corresponding model to cancer mutations

CHASM 11)

A random forest classifier is trained on a curated set of driver mutations derived 
from COSMIC and randomly simulated passenger mutations. It uses eighty-six 
diverse features (available at SNVBox database), including physio-chemical prop-
erties of amino acid residues, scores derived from MSAs of protein or DNA, 
region-based amino acid sequence composition, predicted properties of local pro-
tein structure and annotations from the UniProtKB feature tables.

transFIC 12)

transFIC (for transformed functional impact scores for cancer) takes the Functional 
Impact Score produced by any method aimed at evaluating the impact of a muta-
tion on the functionality of a protein and transforms it, taking into account the 
baseline tolerance of similar proteins to functional impacting variants. The trans-
formation can be interpreted as an adjustment for the impact of the somatic 
variant on cell operation.

Identification 
of driver 
genes across 
tumor cohorts

MuSiC 13)
Identifies genes more mutated than expected by chance taking into account sev-
eral features that shape the baseline probability of each observed mutation -e.g. 
sequencing coverage, gene length and nucleotide change type. 

MutSigCV 14)

Identifies genes recurrently mutated; it incorporates additional data related with 
the mutation burden expected in each gene to construct the background model. 
These covariates includes, among others, data of gene expression collected from 
the RNAseq observed in cancer cell lines and DNA replication time measured in 
HeLa cells.

OncodriveFM 15) Identifies genes biased towards the accumulation of mutations with a larger func-
tional impact measured by the combination of several metrics.

OncodriveCLUST 16) Identifies genes whose mutations are clustered more than expected by a baseline 
model constructed by using silent mutations

Active Driver 17) Identifies genes whose mutations tend to accumulate in or around phosphosites

Identification 
of driver mod-
ules across 
tumor cohorts

MEMo 18) Finds gene modules connected according a priori pathway data exhibiting sample 
mutually exclusive alterations

HotNet 19)
Finds gene modules in which a certain metric -e.g. the mutation frequency or the 
functional impact score-  is accumulated according to a heat diffusion model 
propagated via a priori pathway data connected genes

MSA：multiple sequence alignment，nsSNVs：non-synonymous single nucleotide variants
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tions as an estimation of the baseline clustering of 
mutations in a tumor. Genes with regions harboring an 
accumulation of non-synonymous mutations above this 
baseline are detected by the method. 

Additional approaches have been also developed to 
identify other signals of posit ive selection. For 
instance, ActiveDriver detects genes whose somatic 
mutations preferentially occur in or around phospho-
sites, and thus it is aimed at driver events disrupting 
phosphorylation networks 17). Other methods examine 
mutations in gene modules: MEMo uses pathway data 
to detect cliques of connected genes whose mutations 
follow a pattern of mutual exclusivity in samples. The 
rationale behind it is that a mutation on a second gene 
of an already mutated pathway either does not confer 
further selective advantage to the tumor cell or can 
cause synthetic lethality 18). On the other hand, the 
HotNet algorithm groups connected genes enriched for 
a particular metric -e.g. the mutation frequency- fol-
lowing a heat diffusion model through a gene interac-
tion map 19).

Needless to say, the performance of any method is 
shaped by the inability of constructing a statistical 

framework taking into account the complexity of all 
the potential factors and also by the limitations of the 
criteria itself. For instance, methods based on muta-
tion frequency tend to overlook lowly recurrent 
drivers; the assessment of functional impact is clearer 
for loss-of-function events; and the identification of 
clustered mutations better identifies oncogenes. There-
fore, the combination of several approaches should be 
the best option to balance their pros and contras and 
to obtain the most comprehensive and confident list of 
driver genes. We recently analyzed 3,205 samples 
from 12 different cancer types following this idea 20). 
The resulting list of 291 putative mutational drivers 
showed that the retrieval of bona fide cancer genes is 
improved by using a combination of methods that 
examine complementary signals of positive selection. 

Finally, it is important to stress that not all muta-
tions occurring in a gene identified as cancer driver 
are necessarily involved in the tumorigenesis. In other 
words, driver genes have the potential to cause tumor 
phenotypes and tend to accumulate driver mutations, 
but they can also bear passenger events. This should 
be kept in mind when evaluating mutations of an indi-

Figure 1　Signals of positive selection
Representation of four genes showing different signals of positive selection across a cohort of cancer samples. 
Each dot depicts the gene position of a somatic mutation in a different sample of that cohort. A) Accumulation of a 
high number of mutations that is larger than the expected by chance, thus the gene would be identified as fre-
quently mutated for that tumor cohort. Methods need to take into account multiple features known to influence 
the baseline mutation probability. B) Mutations observed in the gene are biased towards those that cause a high 
functional impact, indicating that this type of mutations have been selected and thus that the gene is a driver. The 
ability of the metrics aimed to score the functional impact shapes the performance of this approach -e.g.  muta-
tions that change residue 1047 of PIK3CA are known to be oncogenic but are underestimated by functional impact 
measurement based on conservation, since this particular residue is highly variable across species 16). C) Mutations 
observed in the gene tends to accumulate in very specific regions, as highlighted by a method based on clustering 
criteria. This approach better captures gain-of-function mutations, such as the BRAF oncogenic mutations in res-
idue 600 16), since truncating mutations leading to loss-of-function are more distributed across the gene. D) In this 
case, mutations tend to occur in phosphosites of the protein. This is highlighted by a method aimed to identify 
cancer events targeting protein phosphorylation.
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vidual tumor.

3	Towards a full catalog of cancer 
drivers

Mutations in driver genes do not fully explain tum-
origenesis in all the cases: some tumor samples -spe-
cially those with a lower mutation burden- show few 
or no mutations in driver genes, although common 
knowledge expects that the disease be caused by sev-
eral alterations acquired during its progression. This 
can be due to several reasons: first, the failure in 
detecting all mutational driver coding genes. Second, 
some driving events may occur in non-coding regions. 
Third, the tumorigenesis can be driven by mechanisms 
other than mutations (e.g. translocations, copy number 
alterations, hypermethylation). However, we expect 
that the analysis of mutations from large tumor cohorts 
should be able to retrieve a comprehensive catalog of 
cancer drivers, as it is likely that most genes driving 
tumorigenesis through other mechanism can also be 
drivers upon point mutations. For instance, drivers tar-
geted by epigenomic silencing or gene deletion are 
likely to be targeted also by truncating mutations; 
those with driver copy number amplification or gene 
fusion, can also act as drivers through activating muta-
tions 21).

Several recent studies have published catalogs of 
driver genes acting across large data sets provided, pri-
marily, by The Cancer Genome Atlas and the Interna-
tional Cancer Genome Consortium initiatives 2) 20) 22) 23). 
All of them showed that few genes are mutated at rela-
tively high frequency, whereas the landscape of cancer 
is dominated by a long tail of lowly recurrent drivers 
whose detection is less reliable 2). It is likely that the 
discovery of genes that are more frequently mutated is 
close to be completed 23)-except for those related with 
rare cancer types not yet systematically studied - 
whereas the catalog of lowly recurrent drivers will be 
extended as the number of included cases increases. It 
is still unknown why some genes are much more com-
monly targeted by cancer, but this is a matter of the 
highest interest to better understand the tumorigenic 
process and the addiction of the tumor cells to certain 
mechanisms.

4	IntOGen-mutations
One of the major hurdles in cancer genomics 

research was the lack of bioinformatics pipelines able 
to easily analyze the large catalogs of mutations 

obtained by cancer re-sequencing projects. To address 
this question, we created IntOGen-mutations (http://
www.intogen.org/mutations), a web-based platform 
aimed to identify cancer drivers from datasets of 
tumor sample cohorts, as well as to browse the results 
of systematic analyses of currently available cancer 
projects provided by large international consortia and 
individual laboratories. The initial release of IntOGen-
mutations analyzed data from more than 4,600 tumor 
samples from 31 large cancer projects collected from 
different sources 24). The analysis includes the assess-
ment of signals of positive selection across each tumor 
cohort and the results obtained at a level of gene, 
pathway and tissue. In addition, links to external data-
bases of interest are included. IntOGen-mutations will 
be regularly updated with new cancer genome rese-
quencing data, and the next release will cover the 
analysis of more than 7,000 samples. In addition to 
browsing the results of already analyzed datasets the 
user can analyze either their own cohort of tumor sam-
ples or mutations in a single individual. The analysis 
pipeline can be run online in our servers or locally on 
the user's computer. Future version of IntOGen-muta-
tions will include information of targeted drugs to fur-
ther aid therapeutic decision-making. 

Final remarks
Cancer is a heterogeneous disease characterized by 

numerous somatic mutations and its understanding 
requires separating driver events from passengers. 
Next-generation sequencing technologies allow ana-
lyzing large cohorts of sequenced tumors to detect the 
signals of positive selection that occur in driver genes. 
Each method aimed for that purpose presents specific 
caveats that should be taken into account when inter-
preting their results, and the best option is to combine 
the results of complementary approaches to balance 
the pros and cons of each of them 20). The use of this 
strategy has recently allowed to confirm the role of 
known cancer genes, to extend their implication in 
other tumors and to discover novel candidates and 
biological processes involved in tumor evolution. In 
this regard, the identification of drivers more com-
monly targeted by the major human cancers are prob-
ably almost completed, whereas the discovery of the 
long tail of lowly recurrent drivers that occur in cancer 
will be further extended with the analysis of larger 
datasets. The retrieval of a comprehensive catalog of 
driver genes is the first step for any downstream anal-
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ysis aimed to better understand tumorigenesis and to 
develop novel therapeutic strategies tailored for each 
individual patient. This will require to understand the 
action of driver events in both time and space and to 
identify the specific vulnerabilities of tumor cells in 
order to design selective therapeutic interventions that 
will take into account their clonal contents and its 
interaction with normal cells. These results, which ulti-
mately will require experimental validation, represent 
the cornerstone of a novel generation of strategies that 
will lead to a more rational and efficient management 
of cancer, together with the improvement of personal-
ized medicine via targeted drugs, the use of immuno-
therapy and the development of better tools for early 

detection.
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