演習で学ぶ 生命科学

第2版

物理・化学・数理からみる生命科学入門

目次

1352 103	2020 200 200 1137 113	
	◆ 序	
	◆ 本書の使い方	1
1章	物理・化学・数理的な生命のあ	みかた
	1 生命理解へのアプローチ 20 2 生物の多様性と一様性 20 3 生物共通の性質 21 4 生命を構成する物質 22 5 細胞の意義 23 6 自由エネルギーの獲得と散逸 24 7 自己複製 25 3 環境への応答と恒常性 26 9 生物の進化と系統 28 10 物質, 駆動力, 制御系からなる自己増殖系 30	
2章	生体分子 ―細胞をつくりあげる物質	群
	1 細胞を構成する有機化合物 32 2 タンパク質 32 3 脂質 36 4 糖 39 5 核酸 40	演習 2-1 情報伝達物質と 受容体の結合定数41
課題1	タンパク質の構造表示①:プリオンの構造をウェブ上で観察する	44
理題 2	タンパク質の構造表示②:プリオンの構造を立体構造ビューアで	印窓すろ

3章	細胞の構造と増殖	
	1 細胞の構造と細胞小器官 48 2 細胞の分裂と増殖 50 3 細胞内輸送 54	演習 3-1 生命の階層性
課題3	細胞周期のシミュレーション	61
	#A'T# 0 FF.#L	
4章	生命活動の駆動力 —代謝と自由:	エネルギー
	1 生命活動と自由エネルギー 63 2 自由エネルギーの保持物質としてのATPとNAD(P)H 68 3 基本的な代謝系 70 4 酵素 71 5 酵素活性の調節 71	演習 4-1 酵素反応のキネティクス73 -2 一定の基質供給がある 酵素反応76
課題4		70
5章	遺伝情報	/8
	1情報分子としての核酸802遺伝子と DNA823 DNAの複製824 RNAへの転写865 真核生物の mRNA プロセシング876 リボソームはタンパク質合成の場89	演習 5-1 細胞分裂とテロメア92 -2 遺伝子発現量の測定94 -3 塩基配列の情報量97 -4 遺伝子頻度 99
課題5	遺伝情報データベースの利用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
課題6	DNAの構造と転写因子の結合	

課題7

6章	システムとしての生命の特性	
	 1 フィードバック回路の重要性	演習 6-1 ネットワークモチーフ 112 -2 正と負のフィードバック回路 114 -3 転写制御のモデル 116 -4 転写のフィードバック制御 118 -5 転写制御のベイズ推定 120
課題8	調べてみよう②:負のフィードバック回路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
7章	生命のダイナミクスとパターン	形成
	1 正のフィードバック回路 123 2 要素の空間内移動を伴うシステム 124 3 反応拡散系 125 4 高次の形態パターンの形成 126 名演習のねらい 127	演習7-1 正のフィードバック回路がつくる定常状態 128-2 Notch-Delta系による側方抑制 130-3 2細胞のチェーリングモデル 134-4 胚のパターン形成 137-5 オーキシンの極性輸送と形態形成 139
課題9	調べてみよう③:パターン形成がみられる生命現象	142
8章	マクロスケールのダイナミクス	
	1 生物と環境:生物間相互作用と生物群集 146 2 生態系の構造と動態 154 3 進化と系統 155	

課題10	調べてみよう④:生態効率10%の理由				
課題 11	配列アラインメントと系統樹の作成				
課題12	最適成長スケジュール	164			
0 =	ナ 合料学の部1 い調本				
り早	生の科子の新しい潮流・	―大規模計測・システム・計算科学			
	1 生命科学と大規模計測	167			
	2生命のシステム科学的理解	169			
	3 生命システムと計算科学	170			
	4 生物にヒントを得た計算手法	173			
	5物理・化学・数理に根ざした生命の動的な理解に向けて				
		174			
課題13	誕生, 絶滅のようなシミュレーション				
休恩コ	誕生, 杷 <u>槻</u> 切よりなノミュレーション	1/3			
課題14	ニューラルネットワークのシミュレーション				
	付 録				
	付録A 発展問題 —多面的な生命理解に	こつながる5題 180			
	付録B 微分方程式の数値計算 ール	ンゲークッタ法			
	付録C 関連図書・参考文献				

◆索 引

提供:Alamy/アフロ

問題一覧

章			問題タイトル	ページ数
2 生体分子		例題 2-1	タンパク質の分子量と等電点	34
		-2	タンパク質の電気泳動パターンと分子量	35
		-3	生体膜を構成する脂質分子の個数	37
		演習 2-1	情報伝達物質と受容体の結合定数	41
		課題1	タンパク質の構造表示① プリオンの構造をウェブ上で観察する	44
		課題2	タンパク質の構造表示② プリオンの構造を立体構造ビューアで観察する	46
3 細胞の構造と	例題 3-1	細胞小器官の形態と物理的性質	49	
	増殖	-2	細胞の増殖と競合	52
		演習 3-1	生命の階層性	55
		-2	細胞内の混み合い	57
		-3	細胞内における生体分子の拡散と輸送	59
		課題3	細胞周期のシミュレーション	61
4	生命活動の	例題 4-1	ATPの自由エネルギー	65
	駆動力	-2	代謝反応の自由エネルギーと平衡定数	66
		-3	酸化還元電位	69
		演習 4-1	酵素反応のキネティクス	73
		-2	一定の基質供給がある酵素反応	76
		課題4	酵素反応のシミュレーション	78
5	遺伝情報	例題 5-1	複製のしくみ―PCRを例に	83
		-2	DNA の情報量と複製のエラー率	85
		-3	選択的スプライシングの推定	88
		-4	遺伝子とタンパク質の関係	89
		演習 5-1	細胞分裂とテロメア	92
		-2	遺伝子発現量の測定	94
		-3	塩基配列の情報量	97
		-4	遺伝子頻度	99
		課題5	遺伝情報データベースの利用	101
		課題6	DNAの構造と転写因子の結合	104
		課題7	調べてみよう① エピジェネティクス	105

章			問題タイトル	ページ数
6	システムとして	演習 6-1	ネットワークモチーフ	112
	の生命の特性	-2	正と負のフィードバック回路	114
		-3	転写制御のモデル	116
		-4	転写のフィードバック制御	118
		-5	転写制御のベイズ推定	120
		課題8	調べてみよう② 負のフィードバック回路	122
	生命のダイナミ	演習 7-1	正のフィードバック回路がつくる定常状態	128
	クスとパターン 形成	-2	Notch-Delta系による側方抑制	130
	71276	-3	2細胞のチューリングモデル	134
		-4	胚のパターン形成	137
		-5	オーキシンの極性輸送と形態形成	139
		課題9	調べてみょう③ パターン形成がみられる生命現象	142
8	マクロスケール のダイナミクス	例題 8−1	ロジスティック方程式	147
		-2	ロトカーボルテラの種間競争式	150
		-3	ロトカ-ボルテラの被食-捕食式	152
		-4	最適成長スケジュール	155
		-5	遺伝的浮動のシミュレーション	158
		課題10	調べてみよう④ 生態効率10%の理由	162
		課題11	配列アラインメントと系統樹の作成	162
		課題12	最適成長スケジュール	164
		課題13	誕生,絶滅のようなシミュレーション	175
		課題14	ニューラルネットワークのシミュレーション	176
付録A	発展問題	発展 1	遺伝様式といとこ婚	180
		2	植物の葉序	181
		3	光合成エネルギーの量子変換効率	182
		4	合成オペロンの進化	183
		5	神経のシグナル伝達原理	184