目 次

	序······	
•	サポートページのご案内	11
• :	本書の使い方	12
•	Python 環境を整える ·······	15
序章	物理・化学・数理的な生命のみかた	17
0.1	1 生命理解へのアプローチ·······	17
	· ニョック・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3 生物共通の性質	
	- エラス起めは真 4 生命を構成する物質	
0	◆ 生物体をつくる元素の特徴◆ 水と有機化合物を結ぶ水素結合の重要性	13
0.5	▼ 1 おかきこく 3 カボの 1 日本 から 日本 にいるの 3 大 に 日本 にいるの 3 大 にいるの 3 大 に 日本 にいるの 3 大 にいるの	20
0.0	◆ 酸化と還元で自由エネルギーを獲得する ◆ 生体エネルギー通貨とも呼ばれる ATP	20
0.6	- 1 - 1-4	21
0.7		
	- 1000000000000000000000000000000000000	
0.0	◆ シグナル伝達経路が応答の基盤 ◆ 制御のしくみから創発する「生き物らしさ」	20
	◆恒常性はシステムが生み出す	
0.9	9 生物の進化と系統	25
	◆ 進化も生物の特徴の 1 つである ◆ 元素の分類とは異なる生物の分類	
	◆ 生物の主な系統と細胞内共生 ◆ 細胞を利用するときの原核生物と真核生物のちがい	
0.1	10 物質、駆動力、制御系からなる自己増殖系	27
序	章 まとめ	28
4		
コ 章	生体分子 ―細胞をつくりあげる物質群―	30
- 1 -	1 細胞を構成する有機化合物	20
	1 相心を悔成9 る有機化ロ初・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.4	◆ タンパク質◆ タンパク質は複雑な立体構造を形成して機能を発揮する◆ 例題 1-1: タンパク質の分子量と	
	▼タノハク負は複雑な立体構造を形成しく機能を光揮する▼ 忉超 I-1・ダノハク負の分子量 ◆ 電気泳動という実験方法 ◆ 例題 1-2:タンパク質の電気泳動パターンと分子量	寺电点
1.9	■ 電気が動じいう大歌がが、 ▼ 内臓 1 2・ランバラ真の電気が動が、 ラミガリ軍3 脂質	35
1.0	◆ 例題 1-3: 生体膜を構成する脂質分子の個数	33
1.4		
1.5		
	3	
《 》		40
4 3	◆ 演習 1:情報伝達物質と受容体の結合定数 章 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
1 1	•	
は説	課題〕タンパク質の構造表示・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	◆ 課題 1:プリオンの構造をウェブ上で観察する ◆ 立体構造ビューア	

-	まとめ	
〔課題	頭)ゲノム情報の表示・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	84
	◆ 課題 3:遺伝情報データベースの利用	
4 章	細胞の構造と増殖	88
4.1	細胞の構造と細胞小器官・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
	◆細胞小器官が存在する◆ 例題 4-1:細胞小器官の形態と物理的性質◆細胞骨格とモーター	
4.2	細胞の分裂と増殖・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
	◆細胞分裂の準備には4段階ある◆細胞周期はサイクリンと CDK が制御する	
	◆ 細胞周期を進めてよいかのチェックポイント機構がある	
	◆ 細胞増殖は個体群成長などにもつながる概念である ◆ 例題 4-2:細胞の増殖と競合	
4.3	細胞内小胞輸送	95
《演習	図》空間・時間・エネルギーの階層性 · · · · · · · · · · · · · · · · · · ·	96
	◆ 演習 4-1:生命の階層性	
《演習	習》細胞内の反応と試験管内の反応は異なる······	98
	◆ 演習 4-2:細胞内の混み合い	
《演習	習》細胞内における生体分子の拡散と輸送	100
	◆ 演習 4-3:細胞内における生体分子の拡散と輸送	
4章	まとめ	101
〔課題	・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	102
	◆ 課題 4:細胞周期のシミュレーション ◆ 考え方:細胞内反応を微分方程式で表す	
_		
) 章	システムとしての生命の特性	106
5.1	生命のシステムにおけるネットワーク	107
5.2	遺伝子発現制御が形作るネットワークの基本形	109
	◆ 例題 5-1: 転写の自己制御 ◆ 例題 5-2:2遺伝子の相互制御	
5.3	代謝制御とホメオスタシス	114
	◆ 考え方:ネットワークモチーフ ◆ 例題 5-3:転写ネットワークのモチーフ	
《演習	習》転写ネットワークとフィードバック回路	118
	◆ 演習 5-1:正と負のフィードバック回路	
《演習	習》分解を考慮した転写制御 ····································	120
《演習	◆ 演習 5-2:転写制御のモデル	
		122
	◆ 演習 5-2: 転写制御のモデル図》分解を考慮した転写のフィードバック制御・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
5章	図》分解を考慮した転写のフィードバック制御・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
-	図》分解を考慮した転写のフィードバック制御 ····································	125
-	図》分解を考慮した転写のフィードバック制御・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	125

	6.1	正のフィードバック回路を含むシステム	128
		◆ 例題 6-1:相互促進と相互抑制がつくる定常状態 ◆考え方:アイソクライン分析	
		◆ 例題 6-2:正のフィードバック回路のアイソクライン分析	
		要素の空間内移動を伴うシステム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	6.3	反応拡散系	134
	6.4	高次の形態パターンの形成	137
	《演習	引》相互抑制の正のフィードバック回路例	138
		◆ 演習 6-1: Notch-Delta 系による側方抑制	
	《演習	習》細胞における反応拡散系	141
		◆ 演習 6-2:2 細胞のチューリングモデル	
	《演習	3》初期発生におけるパターニング	144
		◆ 演習 6-3: 胚のパターン形成	
	《演習	習》植物ホルモンと発生・成長の調節 ····································	146
		◆ 演習 6-4:オーキシンの極性輸送と形態形成	
	6章	まとめ	148
	〔課題	① ダイナミクスをシミュレーションする	149
		◆ 課題 6:チューリングパターン形成のシミュレーション	
_			
7	章	マクロスケールのダイナミクス	150
7			
7		マクロスケールのダイナミクス	
7		マクロスケールのダイナミクス 生物間相互作用と生物群集・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
7	7.1	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1: 競争関係の結末	150
7	7.1	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索	150
7	7.1	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出	150
7	7.1 7.2	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹	150
7	7.1 7.2	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 ② 変異の固定・消失	150
7	7.1	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 ② 変異の固定・消失 ◆ 演習 7:遺伝的浮動のシミュレーション	150
7	7.1 7.2 《演習 7章	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択と適応進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 ② 変異の固定・消失 ◆ 演習 7:遺伝的浮動のシミュレーション まとめ	150 156 162
7	7.1 7.2 《演習 7章	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 ② 変異の固定・消失 ◆ 演習 7:遺伝的浮動のシミュレーション まとめ ① 数理モデルや最適化計算と生物学のさまざまな接点	150 156 162
7	7.1 7.2 《演習 7章	マクロスケールのダイナミクス 生物間相互作用と生物群集	150 156 162
7	7.1 7.2 《演習 7章	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 図〉変異の固定・消失 ◆ 演習 7:遺伝的浮動のシミュレーション まとめ D 数理モデルや最適化計算と生物学のさまざまな接点 ◆ 課題 7-1:海洋で見られるバイオマスの逆転 ・ 課題 7-2:ポントリャーギンの最大化原理や動的計画法について調べてみよう	150 156 162
7	7.1 7.2 《演習 7章	マクロスケールのダイナミクス 生物間相互作用と生物群集	150 156 162
7	7.1 7.2 《演習 7章 〔課是	マクロスケールのダイナミクス 生物間相互作用と生物群集 ◆ 個体群の成長 ◆ ロトカ・ボルテラの競争系 ◆ 例題 7-1:競争関係の結末 ◆ ロトカ・ボルテラの捕食系 ◆ 現実的な捕食系 進化と系統 ◆ 自然選択と適応進化 ◆ 例題 7-2:最適成長スケジュール ◆ 発展:事前知識なしでの最適解探索 ◆ 自然選択によらない進化:遺伝的浮動 ◆ 例題 7-3:ハーディ・ワインベルグ則の導出 ◆ 分子進化の中立説 ◆ 分子系統樹 図〉変異の固定・消失 ◆ 演習 7:遺伝的浮動のシミュレーション まとめ D 数理モデルや最適化計算と生物学のさまざまな接点 ◆ 課題 7-1:海洋で見られるバイオマスの逆転 ・ 課題 7-2:ポントリャーギンの最大化原理や動的計画法について調べてみよう	150 156 162 163