決定版 質量分析活用スタンダ<u>ード</u>

代謝物からタンパク質, 食品・環境の分析まで 質量分析のポテンシャルを活かしきる戦略とプロトコール

目 次

3

■ はじめに

基礎編	質量分析法の基本知識		
	折法 の使い分けガイド ナンプルはどうやって分析するの?	馬場健史	10
	プススペクトロメトリー G/MS について	松田史生	16
3 速習 G GCカラム	C/MS ≿EI, CI	- 及川 彰	23
4 速習 LO ESI法とI	C/MS LCカラム	- 山本敦史	27
5 速習 M	IALDI-MS	- 三浦大典	33
	プロテオミクス 『(DDA, SRM, MRM, DIA) について	·· 松本雅記	36
	機 イオン分析 の原理と得られるデータ	· 谷水雅治	41

実践編 各分野の手法別の活用プロトコール

I 代謝物

1	LC-MS ターゲット分析 中 性糖およびフラボノイド類の一斉解析	左々木亮介	51
2	LC-MS/MS ターゲット分析 臨床バイオマーカー探索を始める前に	順戸山大樹	60
3	LC-MS/MS ターゲット分析 低分子バイオマーカーの定性・定量	前川正充	69
4	LC-MS/MS ターゲット分析 生体試料における薬物由来の代謝物を探る	左々木智子	86
5	GC-MS ターゲット分析 培地成分・組織で特定のアミノ酸を精確に定量する	岡橋伸幸	98
6	LC-MS マルチターゲット分析 培養細胞でエネルギー代謝を定量する	和泉自泰	108
7	GC-MS マルチターゲット分析 食品の揮発性成分を一斉分析・定量する	飯島陽子	119
8	LC-MS/MS ノンターゲット/ターゲット分析 機能性成分を定量する 市来弥生, 酒井美穂,	十一浩典	130
I	タンパク質		
1	試料調製 ゲル内消化	小林大樹	140
2	^{試料調製} 相間移動溶解法 (PTS法)	増田 豪	148
3	試料調製 SP3法	川島祐介	154
4	定量解析 DIA によるラベルフリーシングルショットプロテオーム解析	川島祐介	161
5	定量解析 SILAC 法による定量プロテオミクス	松本雅記	168

6 定量解析 内部標準ペプチドを用いたタンパク質絶対量の定量	現純男 174
7 定量解析 アイソバリックタグを用いた定量解析	1 +7

IP-MS法 足達 9 機能プロテオミクス 近位依存性ビオチン化標識法 松本	
10 機能プロテオミクス リン酸化プロテオーム解析 足立 淳、新繭	
11 機能プロテオミクス タンパク質末端ペプチドの濃縮 石濱 泰,西田紘士,津曲	由和哉 207
12 機能プロテオミクス ユビキチン化プロテオーム解析とユビキチン鎖絶対定量	3拓哉 213
Ⅲ 検査・材料・無機	
	
1 食品・環境の検査	
1 食品・環境の検査 食品・環境の検査における分析 2 食品・環境の検査	*憲弘 229
1 食品・環境の検査 食品・環境の検査における分析 坂井 2 食品・環境の検査 ターゲット分析における分析方法の妥当性評価 小々 3 食品・環境の検査	木憲弘 229 \美子 235
1 食品・環境の検査 食品・環境の検査における分析	木憲弘 229 入美子 235 日典秀 243
1 食品・環境の検査における分析 坂井 2 食品・環境の検査 ターゲット分析における分析方法の妥当性評価 小村 3 食品・環境の検査 試料の採取および保存 木村ク 4 食品・環境の検査 有機汚染物質の質量分析のための前処理 中田 5 食品・環境の検査 中田	林憲弘 229 入美子 235 日典秀 243 最大介 250
1 食品・環境の検査 食品・環境の検査 坂井 2 食品・環境の検査 ターゲット分析における分析方法の妥当性評価 小木 3 食品・環境の検査 大村ク 4 食品・環境の検査 木村ク 5 食品・環境の検査 中田 5 食品・環境の検査 AIQSを用いた 1,000 物質のスクリーニング分析 門上希和夫、中島	林憲弘 229 入美子 235 日典秀 243 景大介 250 壁奈江 258

発展編 発展的な分析法や役立つ情報など

1 双层的公长法

1. 无限的分析法	
1 細胞核プロテオミクスの現状 幡野 敦, 松本雅記	288
2 co-fractionation MS新たな網羅的タンパク質複合体解析法告川治孝	293
3 HDX-MSの概要と活用事例 山口祐希, 野田勝紀, 池田智彦, 内山 進	300
4 血漿ペプチドーム解析技術による生理活性ペプチド探索 小寺義男	305
5 ゲル電気泳動を活用したトップダウンプロテオミクス 武森信曉	310
6 安定同位体標識を活用した代謝フラックス解析 松田史生	314
7 1細胞プロテオームと1細胞メタボロームの技術開発 和泉自泰	317
8 新しいフラグメンテーション	322
Ⅲ役立つ情報	
1 プロテオームデータリポジトリ ――――――――――――――――――――――――――――――――――――	328
2 オンラインツールを活用した低分子マススペクトルの解析 	332
Ⅲ 各分野での質量分析計の活用例	
1 バイオ医薬品 川崎ナナ	338
2 新規汚染物質の探索における質量分析の活用 山本敦史	344
3 法医学における質量分析の活用 奈女良 昭	348
■ 索引	354
■ 執筆者一覧	358