

正誤表・更新情報

本書中に訂正・更新箇所等がございました。お手数をお掛けしますが、下記ご参照頂けますようお願い申しあげます (2018年3月20日)

■第2版 第1刷(2017年3月10日発行)の修正・更新箇所

		·····································	/ 07 07 07 17 17 17 17 17		
夏	場所 生体分子	修正前	修正後	補足	掲載
36	例題2-2解答欄最 終行	$\log_{10} = 4.4462$	log ₁₀ (分子量)=4.4462		2017/3/10
4章	生命活動の駆動力				
63~	4章全体	Δ G ′	ΔG	『′』を削除	2018/3/20
5章	遺伝情報				
86	例題5-2問2の解答	一方、1個体が1回の世代交代(分裂)で 試行できる塩基変化は 3×10 ³ ×10 ⁻³ =3カ所 したがって、1個体が10億年間で試行で きる塩基配列の変異回数は 3×8.76×10 ¹² =2.628×10 ¹³	<mark>ノムに生じる塩基変化は平均して</mark> 3×10 ⁹ ×10 ⁻⁹ =3カ所		2018/3/20
86	例題5-2問3の解答	2.628×10 ¹³ ×10 ¹² = 2.628×10 ²⁵ ゆえに 26 桁	8.76×10 ¹² ×10 ¹² = 8.76×10 ²⁴ ゆえに25 桁		2018/3/20
課題14	ニューラルネット	- ワークのシミュレーション			
176	脚註(*1)	・・・・エリアでどのぐらいの興奮が見られるかというパルス密度の状態を「情報」と捉える。イメージ的にはfMRI画像のようなものを想像するとよい。	・・・・エリアでどのようなパターンの興奮が 見られるか、そのパターンの状態 を「情報」と捉える。	もし2文目のような 言及をするならば 「fMRI画像では解像 度が低いため、その パターンを捉えることはできない。」がま り誤解を招かない表 現となる。	2017/4/5
177		$S_{11}S_{11} + S_{12}S_{21} + S_{13}S_{31}$ W $S_{11}S_{14} + S_{12}S_{24} + S_{13}S_{34}$ $0 - 3 - 3 \cdot 1 - 1 - 3 \cdot 1 - 1 - 1 \cdot 1 - 1 \cdot 1 - 1 \cdot 3 \cdot 1 - 1 \cdot 1 - 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$	転置されたs2の第一要素、その他も同様 S11S11+S12S21+S13S31 W S11S14+S12S24+S13S34 り 3 3 3 1 1 3 1 1 1 1 1 1 1 1 1 3 1	補足の追加と青字 の行列式の表記を 修正(小文字、イタ リック)	2018/3/20
177	③の文中2行目	…例えば <mark>内積s₂•x</mark> が1に近ければ…	…例えば内積s ₂ ·xを要素数で割った値 (<mark>以後これを単に内積と書く</mark>)が1に近け れば…		2018/3/20

178	右の表の下部	Input x0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-8 -8 -8 -48 -8 -48 -8 -8 -48 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	1	1 tion 3 (Wx1) W -1	-16 16 16 16 -36 36 36 36 20 20 36 -16 -36 36 20 -20 -20 -20	-1	Input x0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	(f(Wx0)	Wx1 -22 22 22 -30 30 30 30 -22 -6 23 -6 20 -6 20 -7 20	f(Wx1) 2 -1 2 1 2 1 2 1 2 1 3 -1 4 1 5 -1 6 -1 7 -1 7 -1 7 -1 7 -1 7 -1 7 -1 7 -1 7	-16 16 16 -36 36 -16 -36 36 20 0 20 36 -16 -36 36 20 -20 -20 20	tion (Wx2) -1 1 -1 -1 -1 -1 1 0 0 1 1 -1 -1 -1 1 1 0 0 0 3 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2018/3/20
	右の表の下の左から2つ目の図				••••••••••••••••••••••••••••••••••••••											2018/3/20